Những câu hỏi liên quan
Nguyễn Văn A
Xem chi tiết
meme
1 tháng 9 2023 lúc 14:03

Để chứng minh rằng ama + bmb + cmc ≥ √32, ta sử dụng bất đẳng thức tam giác. Bất đẳng thức tam giác cho biết rằng tổng độ dài của ba đường trung tuyến của một tam giác luôn lớn hơn hoặc bằng bình phương độ dài cạnh tương ứng. Vì vậy, ta có:

ama + bmb + cmc ≥ (ma + mb + mc)²/3

Theo định lý đường trung tuyến, ta biết rằng ma + mb + mc = 3/2(a + b + c). Thay vào biểu thức trên, ta có:

ama + bmb + cmc ≥ (3/2(a + b + c))²/3

Simplifying the expression, we get:

ama + bmb + cmc ≥ 3/4(a + b + c)²

Để chứng minh rằng ama + bmb + cmc ≥ √32, ta cần chứng minh rằng 3/4(a + b + c)² ≥ √32. Tuy nhiên, để chứng minh điều này, cần thêm thông tin về giá trị của a, b, c.

Bình luận (0)
FK-HUYTA
Xem chi tiết
Hồng Phúc
20 tháng 12 2020 lúc 23:18

1.

\(\overrightarrow{AD}=\overrightarrow{AB}+\overrightarrow{BD}=\overrightarrow{AB}+\dfrac{c}{b+c}\overrightarrow{BC}=\dfrac{\left(b+c\right)\overrightarrow{AB}+c\overrightarrow{BC}}{b+c}=\dfrac{b\overrightarrow{AB}+c\overrightarrow{AC}}{b+c}\)

\(\Rightarrow AD^2=\dfrac{\left(b\overrightarrow{AB}+c\overrightarrow{AC}\right)^2}{\left(b+c\right)^2}=\dfrac{2b^2c^2+2b^2c^2.cosA}{\left(b+c\right)^2}=\dfrac{2b^2c^2\left(1+cos\alpha\right)}{\left(b+c\right)^2}\)

\(\Rightarrow AD=\dfrac{bc\sqrt{2+2cos\alpha}}{b+c}\)

Bình luận (0)
Hồng Phúc
20 tháng 12 2020 lúc 23:33

2.

\(MA^2+MB^2+MC^2=\left(\overrightarrow{MG}+\overrightarrow{GA}\right)^2+\left(\overrightarrow{MG}+\overrightarrow{GB}\right)^2+\left(\overrightarrow{MG}+\overrightarrow{GC}\right)^2\)

\(=3MG^2+GA^2+GB^2+GC^2+2\overrightarrow{MG}\left(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}\right)\)

\(=3MG^2+GA^2+GB^2+GC^2\)

\(=3MG^2+\dfrac{4}{9}\left(AM^2+MB^2+MC^2\right)\)

\(=3MG^2+\dfrac{4}{9}\left(\dfrac{2b^2+2c^2-a^2}{4}+\dfrac{2a^2+2c^2-b^2}{4}+\dfrac{2a^2+2b^2-c^2}{4}\right)\)

\(=3MG^2+\dfrac{4}{9}.\dfrac{3}{4}\left(a^2+b^2+c^2\right)\)

\(=3MG^2+\dfrac{1}{3}\left(a^2+b^2+c^2\right)\)

Bình luận (0)
Hồng Phúc
20 tháng 12 2020 lúc 23:43

3.

Hình vẽ:

Đặt các vecto đơn vị \(\overrightarrow{u},\overrightarrow{v},\overrightarrow{w}\) cùng hướng \(\overrightarrow{AB};\overrightarrow{BC};\overrightarrow{CA}\)

Khi đó \(\left(\overrightarrow{u}+\overrightarrow{v}+\overrightarrow{w}\right)^2=3-2\left(cosA+cosB+cosC\right)=3-2P\)

\(\Rightarrow3-2P=\left(\overrightarrow{u}+\overrightarrow{v}+\overrightarrow{w}\right)^2\ge0\Rightarrow P\le\dfrac{3}{2}\)

\(maxP=\dfrac{3}{2}\Leftrightarrow\Delta ABC\) đều

Bình luận (0)
Pun Cự Giải
Xem chi tiết
Sengoku
Xem chi tiết
Nguyễn Việt Lâm
29 tháng 5 2020 lúc 20:01

Chà bạn ghi đề sai làm mãi không được

Đề đúng là: \(m_a^2+m_b^2+m_c^2=3\sqrt{3}S\)

Thay công thức trung tuyến vào ta được:

\(\Leftrightarrow\frac{3}{4}\left(a^2+b^2+c^2\right)=3\sqrt{3}S\Leftrightarrow a^2+b^2+c^2=4\sqrt{3}S\)

Ta có:

\(VP=4\sqrt{3}\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}\)

\(VP\le4\sqrt{3}.\sqrt{p\left(\frac{p-a+p-b+p-c}{3}\right)^3}=4\sqrt{3}\sqrt{p\left(\frac{3p-\left(a+b+c\right)}{3}\right)^3}=\frac{4}{3}p^2\)

\(VT\le\frac{4}{3}\left(\frac{a+b+c}{2}\right)^2=\frac{1}{3}\left(a+b+c\right)^2\le a^2+b^2+c^2=VT\)

Dấu "="xảy ra khi và chỉ khi \(a=b=c\) hay tam giác ABC đều

Bình luận (0)
VUX NA
Xem chi tiết
hoàng long
14 tháng 5 2023 lúc 10:14

bài này khó giúp hộ em với

 

Bình luận (0)
minh nguyen
Xem chi tiết
Nguyễn Việt Lâm
19 tháng 4 2022 lúc 19:30

Đề bài sai

Đề đúng: \(\dfrac{1}{\sqrt{a}+2\sqrt{b}+3}+\dfrac{1}{\sqrt{b}+2\sqrt{c}+3}+\dfrac{1}{\sqrt{c}+2\sqrt{a}+3}\le\dfrac{1}{2}\)

Bình luận (2)
Nguyễn Việt Lâm
19 tháng 4 2022 lúc 21:23

Đặt \(\left(\sqrt{a};\sqrt{b};\sqrt{c}\right)=\left(x^2;y^2;z^2\right)\Rightarrow xyz=1\)

Đặt vế trái BĐT cần chứng minh là P, ta có:

\(P=\dfrac{1}{x^2+2y^2+3}+\dfrac{1}{y^2+2z^2+3}+\dfrac{1}{z^2+2x^2+3}\)

\(P=\dfrac{1}{\left(x^2+y^2\right)+\left(y^2+1\right)+2}+\dfrac{1}{\left(y^2+z^2\right)+\left(z^2+1\right)+2}+\dfrac{1}{\left(z^2+x^2\right)+\left(x^2+1\right)+2}\)

\(P\le\dfrac{1}{2xy+2y+2}+\dfrac{1}{2yz+2z+2}+\dfrac{1}{2zx+2x+2}\)

\(P\le\dfrac{1}{2}\left(\dfrac{xz}{xz\left(xy+y+1\right)}+\dfrac{x}{x\left(yz+z+1\right)}+\dfrac{1}{zx+x+1}\right)\)

\(P\le\dfrac{1}{2}\left(\dfrac{xz}{x.xyz+xyz+xz}+\dfrac{x}{xyz+xz+1}+\dfrac{1}{xz+x+1}\right)\)

\(P\le\dfrac{1}{2}\left(\dfrac{xz}{x+1+xz}+\dfrac{x}{1+xz+1}+\dfrac{1}{xz+x+1}\right)=\dfrac{1}{2}\)

Dấu "=" xảy ra khi \(x=y=z=1\) hay \(a=b=c=1\)

Bình luận (0)
Uzumaki Naruto
Xem chi tiết
Trương Việt Bắc
7 tháng 2 2023 lúc 13:46

Có MA+MB > AB

MB+MC > BC             Bất đẳng thức trong tam giác

MA + MC > AC

Cộng vế với vết của 3 bất đẳng thức trên ta có2MA + 2MB + 2MC > AB + BC + AC = 3aMA + MB + MC > 3a/2 > a√3/2 (đfcm) 
Bình luận (0)
Liễu Lê thị
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 11 2021 lúc 22:55

a: Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

\(\dfrac{ma+nc}{mb+nd}=\dfrac{mbk+ndk}{mb+nd}=k\)

\(\dfrac{pa+qc}{pb+qd}=\dfrac{pbk+qdk}{pb+qd}=k\)

Do đó: \(\dfrac{ma+nc}{mb+nd}=\dfrac{pa+qc}{pb+qd}\)

Bình luận (0)
Nguyen hoan
Xem chi tiết
Đức Anh Lê
Xem chi tiết